

 DevOps Shack

 Comprehensive Guide to Ansible

 Click Here To Enrol To Batch-6 | DevOps & Cloud DevOps

Introduction to Ansible

What is Ansible?

Ansible is an open-source automation tool used for configuration management,

application deployment, task automation, and IT orchestration. It enables IT

professionals to automate repetitive tasks, manage large-scale environments

efficiently, and ensure consistent configurations across multiple servers.

Key Features of Ansible

1. Agentless Architecture: Ansible does not require any software or agent to be

installed on the nodes it manages. It uses SSH for communication, which simplifies

setup and reduces overhead.

2. Declarative Language: Ansible uses a simple, human-readable language called YAML

(YAML Ain't Markup Language) to define automation tasks. This makes it easy for

users to write and understand playbooks.

3. Idempotency: Ansible ensures that a task achieves the same result regardless of the

number of times it is run. This means you can apply a playbook repeatedly without

changing the outcome after the initial application.

4. Extensible: Ansible supports a wide range of modules for various tasks and allows

users to create custom modules and plugins as needed.

https://www.devopsshack.com/courses/Batch-6--Zero-To-Hero--DevSecOps--Cloud-DevOps-667f96d21539231e11d1e391

Use Cases of Ansible

1. Configuration Management: Automate the configuration of systems and ensure

consistency across environments.

2. Application Deployment: Streamline the deployment of applications and services,

reducing manual effort and minimizing errors.

3. Orchestration: Coordinate complex multi-tier deployments and manage

dependencies between systems.

4. Provisioning: Automate the setup of infrastructure resources such as virtual

machines, containers, and cloud services.

Benefits of Using Ansible

1. Simplicity and Ease of Use: Ansible is designed to be simple and easy to use, with a

minimal learning curve. Its straightforward syntax and clear structure make it

accessible to beginners and experienced users alike.

2. Powerful Automation Capabilities: Ansible can automate a wide range of tasks,

from basic system configuration to complex application deployments and

orchestration.

3. Scalability: Ansible can scale to manage thousands of nodes, making it suitable for

both small and large-scale environments.

4. Community and Ecosystem: Ansible has a large and active community that

contributes to its development and provides support. The extensive ecosystem of

modules, roles, and plugins enhances its capabilities and adaptability.

Setting Up Ansible

Installing Ansible

Ansible can be installed on various operating systems, including Linux, macOS, and

Windows. The following sections provide instructions for installing Ansible on

different platforms.

Installing Ansible on Linux

For most Linux distributions, Ansible can be installed using the package manager.

Below are the steps for installing Ansible on some popular Linux distributions.

Ubuntu/Debian:

sudo apt update

sudo apt install ansible

CentOS/RHEL:

sudo yum install epel-release

sudo yum install ansible

Installing Ansible on macOS

On macOS, Ansible can be installed using Homebrew:

brew install ansible

Installing Ansible on Windows

On Windows, Ansible can be installed using the Windows Subsystem for Linux (WSL).

Here are the steps:

1. Enable WSL: Open PowerShell as Administrator and run:

wsl --install

2. Install a Linux distribution: For example, Ubuntu.

3. Install Ansible on WSL: Open the WSL terminal and run:
4. sudo apt update

sudo apt install ansible

Verifying the Installation

To verify that Ansible is installed correctly, run:

ansible --version

This command should display the installed version of Ansible and other related

information.

Ansible Basics

Ansible Inventory

Ansible inventory is a file that lists the hosts and groups of hosts that Ansible will

manage. By default, Ansible looks for the inventory file at /etc/ansible/hosts, but

you can specify a different inventory file using the -i option.

Example of an Inventory File:

/etc/ansible/hosts

[webservers]

web1.example.com

web2.example.com

[dbservers]

db1.example.com

db2.example.com

Ansible Modules

Ansible modules are the building blocks of Ansible playbooks. They are reusable

scripts that perform specific tasks such as installing packages, copying files, and

managing services.

Example of Using a Module:

ansible all -m ping -i inventory.ini

This command uses the ping module to check the connectivity of all hosts listed in

the inventory.ini file.

Ansible Ad-Hoc Commands

Ad-hoc commands allow you to run a single task on one or more hosts without

writing a playbook. They are useful for quick tasks or troubleshooting.

Example of an Ad-Hoc Command:

ansible webservers -m yum -a "name=httpd state=present" -i inventory.ini

This command installs the httpd package on all hosts in the webservers group.

Ansible Configuration File

Ansible's behavior can be customized using a configuration file (ansible.cfg). This

file allows you to set various options, such as the default inventory location, SSH

connection settings, and module configuration.

Example of an Ansible Configuration File:

[defaults]

inventory = ./inventory

remote_user = ansible

private_key_file = ~/.ssh/id_rsa

host_key_checking = False

retry_files_enabled = False

Managing Ansible Inventory with Dynamic Inventory Scripts

Ansible supports dynamic inventory scripts, which allow you to generate inventory

data dynamically from external sources such as cloud providers, CMDBs, and

monitoring systems.

Example of Using a Dynamic Inventory Script:

ansible-playbook -i dynamic_inventory.py playbook.yml

Ansible Playbooks

Ansible playbooks are YAML files that define a series of tasks to be executed on

specified hosts. Playbooks are more powerful and flexible than ad-hoc commands,

allowing you to define complex automation workflows.

Structure of a Playbook

A playbook consists of one or more plays. Each play specifies a set of tasks to be

executed on a group of hosts.

Example of a Simple Playbook:

- name: Install and start Apache

 hosts: webservers

 become: yes

 tasks:

 - name: Install Apache

 yum:

 name: httpd

 state: present

 - name: Start Apache service

 service:

 name: httpd

 state: started

Variables in Playbooks

Variables allow you to parameterize your playbooks, making them more flexible and

reusable.

Example of Using Variables:

- name: Install and start Apache

 hosts: webservers

 become: yes

 vars:

 httpd_package: httpd

 httpd_service: httpd

 tasks:

 - name: Install Apache

 yum:

 name: "{{ httpd_package }}"

 state: present

 - name: Start Apache service

 service:

 name: "{{ httpd_service }}"

 state: started

Handlers

Handlers are tasks that are triggered by other tasks. They are typically used to restart

services when a configuration file changes.

Example of Using Handlers:

- name: Install and configure Apache

 hosts: webservers

 become: yes

 tasks:

 - name: Install Apache

 yum:

 name: httpd

 state: present

 - name: Copy Apache config file

 copy:

 src: /path/to/httpd.conf

 dest: /etc/httpd/conf/httpd.conf

 notify: Restart Apache

 handlers:

 - name: Restart Apache

 service:

 name: httpd

 state: restarted

Conditionals

Conditionals allow you to run tasks only when certain conditions are met.

Example of Using Conditionals:

- name: Install Apache on CentOS

 hosts: webservers

 become: yes

 tasks:

 - name: Install Apache

 yum:

 name: httpd

 state: present

 when: ansible_os_family == "RedHat"

Loops

Loops allow you to run a task multiple times with different parameters.

Example of Using Loops:

- name: Install multiple packages

 hosts: webservers

 become: yes

 tasks:

 - name: Install packages

 yum:

 name: "{{ item }}"

 state: present

 loop:

 - httpd

 - mysql-server

 - php

Delegation

Delegation allows you to execute tasks on a different host than the one defined in

the playbook.

Example of Using Delegation:

- name: Gather facts from web servers

 hosts: webservers

 become: yes

 gather_facts: no

 tasks:

 - name: Gather facts from all web servers

 setup:

 delegate_to: localhost

Notifications and Handlers

Handlers are special tasks that run when triggered by other tasks. They are typically

used to restart services when a configuration file changes.

Example of Using Handlers:

- name: Configure web server

 hosts: webservers

 become: yes

 tasks:

 - name: Install Nginx

 yum:

 name: nginx

 state: present

 - name: Deploy Nginx configuration

 template:

 src: nginx.conf.j2

 dest: /etc/nginx/nginx.conf

 notify: Restart Nginx

 handlers:

 - name: Restart Nginx

 service:

 name: nginx

 state: restarted

Roles

Roles allow you to organize your playbooks into reusable components. Each role has

a standard directory structure and can include tasks, handlers, variables, templates,

and files.

Example of a Role Directory Structure:

roles/

 common/

 tasks/

 main.yml

 handlers/

 main.yml

 templates/

 ...

 files/

 ...

 vars/

 main.yml

 defaults/

 main.yml

 meta/

 main.yml

Example of Using a Role in a Playbook:

- name: Setup web servers

 hosts: webservers

 roles:

 - common

 - web

Ansible Galaxy

Ansible Galaxy is a repository for Ansible roles. It allows you to download and share

roles with the community.

Example of Installing a Role from Ansible Galaxy:

ansible-galaxy install username.role_name

Ansible Vault

Ansible Vault is a feature that allows you to encrypt sensitive data such as passwords

and API keys. This ensures that sensitive information is not exposed in your

playbooks.

Example of Creating an Encrypted File:

ansible-vault create secrets.yml

Example of Encrypting an Existing File:

ansible-vault encrypt secrets.yml

Example of Using Encrypted Variables in a Playbook:

- name: Deploy application

 hosts: webservers

 become: yes

 vars_files:

 - secrets.yml

 tasks:

 - name: Print the secret message

 debug:

 msg: "{{ secret_message }}"

Ansible Tower

Ansible Tower is an enterprise version of Ansible that provides a web-based user

interface, REST API, and other features for managing and scaling Ansible automation.

Key Features of Ansible Tower:

1. Role-Based Access Control: Control who can run specific playbooks and access

certain resources.

2. Job Scheduling: Schedule playbook runs at specific times.

3. Graphical Inventory Management: Manage your inventory through a web interface.

4. Real-Time Job Output: View the output of playbook runs in real time.

Dynamic Inventory

Dynamic inventory allows you to generate inventory data dynamically from external

sources such as cloud providers, CMDBs, and monitoring systems.

Example of Using a Dynamic Inventory Script:

ansible-playbook -i dynamic_inventory.py playbook.yml

Best Practices for Ansible

Organizing Playbooks

1. Use Roles: Organize your playbooks into roles to promote reuse and maintainability.

2. Separate Variables: Keep variables in separate files and use vars_files to load

them.

3. Use Handlers: Use handlers to manage service restarts and other actions triggered

by changes.

4. Use Templates: Use Jinja2 templates for configuration files to make them dynamic

and reusable.

Writing Idempotent Playbooks

1. Check for Changes: Always check if a change is necessary before making it. Many

Ansible modules have a state parameter to ensure idempotency.

2. Use changed_when and failed_when: Customize task results with these directives to

handle edge cases.

3. Test Playbooks: Regularly test your playbooks in different environments to ensure

they work as expected.

Security Practices

1. Use Ansible Vault: Encrypt sensitive data such as passwords and API keys.

2. Limit Privilege Escalation: Use become and become_user judiciously to limit the

scope of privilege escalation.

3. Use Secure Connections: Ensure that all connections to managed nodes are

encrypted using SSH or other secure protocols.

Performance Optimization

1. Limit Parallelism: Use the -f option to limit the number of parallel connections to

prevent overwhelming your infrastructure.

2. Use Fact Caching: Cache facts to avoid gathering them repeatedly, which can save

time on large inventories.

3. Optimize Playbook Structure: Group tasks logically and minimize redundant

operations.

Troubleshooting Ansible

1. Use Verbose Mode: Increase verbosity with the -v, -vv, or -vvv options to get more

detailed output.

2. Check Logs: Review logs for errors and warnings that can provide insights into issues.

3. Test Connectivity: Use the ping module to verify connectivity to managed nodes.

4. Validate Syntax: Use ansible-playbook --syntax-check to validate the syntax of

your playbooks.

Example Playbook with Best Practices

- name: Deploy web application

 hosts: webservers

 become: yes

 vars_files:

 - vars/main.yml

 roles:

 - common

 - web

 tasks:

 - name: Ensure Apache is installed

 yum:

 name: httpd

 state: present

 - name: Deploy application files

 template:

 src: app.conf.j2

 dest: /etc/httpd/conf.d/app.conf

 notify: Restart Apache

 handlers:

 - name: Restart Apache

 service:

 name: httpd

 state: restarted

Ansible Modules in Depth

Ansible modules are the core components that Ansible uses to perform tasks. They

are reusable, standalone scripts that can be executed by Ansible on your managed

nodes. Here, we will delve into some of the most commonly used Ansible modules

and their functionalities.

Command and Shell Modules

These modules allow you to run commands on remote hosts.

Example of Using the Command Module:

- name: Run a command

 hosts: all

 tasks:

 - name: Run the uptime command

 command: uptime

Example of Using the Shell Module:

- name: Run a shell command

 hosts: all

 tasks:

 - name: Run a shell script

 shell: /usr/bin/myscript.sh

File Module

The file module is used to manage file properties.

Example of Using the File Module:

- name: Manage files and directories

 hosts: all

 tasks:

 - name: Create a directory

 file:

 path: /etc/myapp

 state: directory

 mode: '0755'

 - name: Create an empty file

 file:

 path: /etc/myapp/config.txt

 state: touch

Copy Module

The copy module is used to copy files from the control machine to remote hosts.

Example of Using the Copy Module:

- name: Copy files to remote hosts

 hosts: all

 tasks:

 - name: Copy configuration file

 copy:

 src: /local/path/to/config.txt

 dest: /remote/path/to/config.txt

Template Module

The template module is used to deploy configuration files using Jinja2 templates.

Example of Using the Template Module:

- name: Deploy configuration files

 hosts: all

 tasks:

 - name: Deploy Nginx configuration

 template:

 src: nginx.conf.j2

 dest: /etc/nginx/nginx.conf

Service Module

The service module is used to manage services.

Example of Using the Service Module:

- name: Manage services

 hosts: all

 tasks:

 - name: Ensure Nginx is started

 service:

 name: nginx

 state: started

User Module

The user module is used to manage user accounts.

Example of Using the User Module:

- name: Manage user accounts

 hosts: all

 tasks:

 - name: Create a user

 user:

 name: johndoe

 state: present

 groups: sudo

Package Module

The package module is used to manage software packages.

Example of Using the Package Module:

- name: Install packages

 hosts: all

 tasks:

 - name: Ensure Git is installed

 package:

 name: git

 state: present

Git Module

The git module is used to manage Git repositories.

Example of Using the Git Module:

- name: Manage Git repositories

 hosts: all

 tasks:

 - name: Clone a Git repository

 git:

 repo: 'https://github.com/ansible/ansible-examples.git'

 dest: /opt/ansible-examples

Debug Module

The debug module is used to print messages and variables during playbook

execution.

Example of Using the Debug Module:

- name: Print debug messages

 hosts: all

 tasks:

 - name: Print a message

 debug:

 msg: "This is a debug message"

 - name: Print a variable

 debug:

 var: ansible_facts['os_family']

Ansible and the Cloud

Ansible can be used to automate the provisioning and management of cloud

resources. Below are some examples of using Ansible with different cloud

providers.

AWS

Example of Using Ansible with AWS:

- name: Provision EC2 instances

 hosts: localhost

 gather_facts: no

 tasks:

 - name: Launch EC2 instance

 ec2:

 key_name: mykey

 instance_type: t2.micro

 image: ami-0c55b159cbfafe1f0

 wait: yes

 count: 1

 region: us-west-2

 vpc_subnet_id: subnet-123456

 group: default

 instance_tags:

 Name: AnsibleEC2

Azure

Example of Using Ansible with Azure:

- name: Create a virtual machine in Azure

 hosts: localhost

 tasks:

 - name: Create VM

 azure_rm_virtualmachine:

 resource_group: myResourceGroup

 name: myVM

 vm_size: Standard_DS1_v2

 admin_username: myadmin

 admin_password: mypassword

 image:

 offer: UbuntuServer

 publisher: Canonical

 sku: '18.04-LTS'

 version: latest

Google Cloud Platform

Example of Using Ansible with GCP:

- name: Create an instance in GCP

 hosts: localhost

 tasks:

 - name: Create an instance

 gcp_compute_instance:

 name: my-instance

 machine_type: n1-standard-1

 zone: us-central1-a

 disks:

 - auto_delete: true

 boot: true

 initialize_params:

 source_image: projects/debian-

cloud/global/images/family/debian-9

 network_interfaces:

 - network: default

 access_configs:

 - name: External NAT

 type: ONE_TO_ONE_NAT

Ansible Galaxy Roles and Collections

Creating and Using Roles

Ansible roles allow you to organize your playbooks and share them with others.

Roles are structured in a specific way to promote reuse and simplify complex

playbooks.

Example of a Role Directory Structure:

roles/

 myrole/

 tasks/

 main.yml

 handlers/

 main.yml

 templates/

 ...

 files/

 ...

 vars/

 main.yml

 defaults/

 main.yml

 meta/

 main.yml

Example of Using a Role in a Playbook:

- name: Apply myrole

 hosts: all

 roles:

 - myrole

Publishing Roles to Ansible Galaxy

Ansible Galaxy is a community hub for sharing Ansible roles. You can publish your

roles to Ansible Galaxy and use roles shared by others.

Example of Publishing a Role:

1. Create a Galaxy Account: Sign up at Ansible Galaxy.

2. Prepare Role Metadata: Ensure your role has a meta/main.yml file with the

necessary metadata.

3. Publish Role: Use the ansible-galaxy command to publish the role.

ansible-galaxy import username myrole

Using Collections

Ansible collections are a distribution format for Ansible content that can include

roles, modules, and plugins.

Example of Using a Collection:

- name: Use a collection

 hosts: all

 collections:

 - community.general

https://galaxy.ansible.com/

 tasks:

 - name: Install a package using a collection module

 package:

 name: vim

 state: present

Ansible Best Practices and Tips

Version Control

1. Use Git: Version control your playbooks, roles, and inventory files using Git.

2. Branching Strategy: Use branches for development, testing, and production

environments.

Testing and Validation

1. Linting: Use tools like ansible-lint to check your playbooks for best practices and

syntax errors.

2. CI/CD: Integrate Ansible with CI/CD pipelines to automate testing and deployment.

Documentation

1. Inline Comments: Add comments to your playbooks and roles to explain the

purpose of tasks and variables.

2. Documentation Files: Create README files for your roles and collections to provide

usage instructions and examples.

Community Involvement

1. Contribute: Contribute to Ansible projects on GitHub and share your roles on

Ansible Galaxy.

2. Stay Updated: Follow Ansible's official blog and join community forums to stay

updated with the latest features and best practices.

Conclusion

Ansible is a powerful automation tool that simplifies the management of complex IT

environments. This comprehensive guide has covered the basics of Ansible, advanced

concepts, best practices, and examples of using Ansible with various cloud providers.

By following these guidelines and exploring the extensive features of Ansible, you

can automate tasks, ensure consistent configurations, and improve the efficiency of

your operations.

Remember, the key to mastering Ansible is practice. Start with simple playbooks and

gradually explore more advanced features as you gain confidence. The Ansible

community is vast and supportive, so don't hesitate to seek help and share your

knowledge. Happy automating!

